If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y^2-12y-16=0
a = 3; b = -12; c = -16;
Δ = b2-4ac
Δ = -122-4·3·(-16)
Δ = 336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{336}=\sqrt{16*21}=\sqrt{16}*\sqrt{21}=4\sqrt{21}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-4\sqrt{21}}{2*3}=\frac{12-4\sqrt{21}}{6} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+4\sqrt{21}}{2*3}=\frac{12+4\sqrt{21}}{6} $
| F(x)=5x^2-30x+30 | | 5*x+9=2*x | | 5(x-2)-2x=-19 | | 2q+5q=77 | | -2760+x-0.01x=4000 | | 3n-10=n+4;n=7 | | 2760+x-0.01x=4000 | | -16x^2+15x=-120 | | -9(5)+6+7(5)=-3x+11 | | -16x^2+15x+120=0 | | 3x+4x-14=28 | | 2.3x-4.87=6.4 | | 7+0.5x=9+0.25x | | 4(m–3)=24 | | M2+8m=-3 | | X^2-10x=-60 | | 0=3x^2–280x | | 14x-1+30x+5=180 | | 2v+2(v-5)=14 | | 2(u+7)+8u=24 | | 2t^2=2.0t+5.6 | | 14x-1=30x+5 | | 4(y-3)+2y=-6 | | 6x8=6x(5+)= | | P/2L=2w | | f(-3)=-1/3-3+13 | | 21x–24–10x=-79 | | k/9=5/4 | | 6/11=13/k | | X2+11x-14=0 | | 6=13.11k | | 3660+x-0.01x=4000 |